Upper Tails for Edge Eigenvalues of Random Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Tails for Subgraph Counts in Random Graphs

Let G be a fixed graph and let XG be the number of copies of G contained in the random graph G(n, p). We prove exponential bounds on the upper tail of XG which are best possible up to a logarithmic factor in the exponent. Our argument relies on an extension of Alon’s result about the maximum number of copies of G in a graph with a given number of edges. Similar bounds are proved for the random ...

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

Upper Tails and Independence Polynomials in Random Graphs

The upper tail problem in the Erdős–Rényi random graph G ∼ Gn,p asks to estimate the probability that the number of copies of a graph H in G exceeds its expectation by a factor 1 + δ. Chatterjee and Dembo showed that in the sparse regime of p→ 0 as n→∞ with p ≥ n−α for an explicit α = αH > 0, this problem reduces to a natural variational problem on weighted graphs, which was thereafter asymptot...

متن کامل

on the eigenvalues of normal edge-transitive cayley graphs

a graph $gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $gamma$ acts transitively on $v(gamma)$ or $e(gamma)$‎, ‎respectively‎. ‎let $gamma=cay(g,s)$ be a cayley graph on $g$ relative to $s$‎. ‎then, $gamma$ is said to be normal edge-transitive‎, ‎if $n_{aut(gamma)}(g)$ acts transitively on edges‎. ‎in this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

Eigenvalues and edge-connectivity of regular graphs

In this paper, we show that if the second largest eigenvalue of a d-regular graph is less than d − 2(k−1) d+1 , then the graph is k-edge-connected. When k is 2 or 3, we prove stronger results. Let ρ(d) denote the largest root of x3 − (d− 3)x2 − (3d− 2)x− 2 = 0. We show that if the second largest eigenvalue of a d-regular graph G is less than ρ(d), then G is 2-edge-connected and we prove that if...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2020

ISSN: 0895-4801,1095-7146

DOI: 10.1137/18m1230852