Upper Tails for Edge Eigenvalues of Random Graphs
نویسندگان
چکیده
منابع مشابه
Upper Tails for Subgraph Counts in Random Graphs
Let G be a fixed graph and let XG be the number of copies of G contained in the random graph G(n, p). We prove exponential bounds on the upper tail of XG which are best possible up to a logarithmic factor in the exponent. Our argument relies on an extension of Alon’s result about the maximum number of copies of G in a graph with a given number of edges. Similar bounds are proved for the random ...
متن کاملOn the eigenvalues of normal edge-transitive Cayley graphs
A graph $Gamma$ is said to be vertex-transitive or edge- transitive if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$, respectively. Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$. Then, $Gamma$ is said to be normal edge-transitive, if $N_{Aut(Gamma)}(G)$ acts transitively on edges. In this paper, the eigenvalues of normal edge-tra...
متن کاملUpper Tails and Independence Polynomials in Random Graphs
The upper tail problem in the Erdős–Rényi random graph G ∼ Gn,p asks to estimate the probability that the number of copies of a graph H in G exceeds its expectation by a factor 1 + δ. Chatterjee and Dembo showed that in the sparse regime of p→ 0 as n→∞ with p ≥ n−α for an explicit α = αH > 0, this problem reduces to a natural variational problem on weighted graphs, which was thereafter asymptot...
متن کاملon the eigenvalues of normal edge-transitive cayley graphs
a graph $gamma$ is said to be vertex-transitive or edge- transitive if the automorphism group of $gamma$ acts transitively on $v(gamma)$ or $e(gamma)$, respectively. let $gamma=cay(g,s)$ be a cayley graph on $g$ relative to $s$. then, $gamma$ is said to be normal edge-transitive, if $n_{aut(gamma)}(g)$ acts transitively on edges. in this paper, the eigenvalues of normal edge-tra...
متن کاملEigenvalues and edge-connectivity of regular graphs
In this paper, we show that if the second largest eigenvalue of a d-regular graph is less than d − 2(k−1) d+1 , then the graph is k-edge-connected. When k is 2 or 3, we prove stronger results. Let ρ(d) denote the largest root of x3 − (d− 3)x2 − (3d− 2)x− 2 = 0. We show that if the second largest eigenvalue of a d-regular graph G is less than ρ(d), then G is 2-edge-connected and we prove that if...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Discrete Mathematics
سال: 2020
ISSN: 0895-4801,1095-7146
DOI: 10.1137/18m1230852